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Abstract. The ground state properties of the Shastry-Sutherland model in the presence of an external field
are investigated by means of variational states built up from unpaired spins (monomers) and singlet pairs
of spins (dimers). The minimum of the energy is characterized by specific monomer-dimer configurations,
which visualize the magnetic order in the sectors with fixed magnetization M = S/N . A change in the
magnetic order is observed if the frustrating coupling α exceeds a critical value αc(M), which depends on
M . Special attention is paid to the ground state configurations at M = 1/4, 1/6, 1/8.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.10.Jm Quantized spin models

1 Introduction

The Shastry-Sutherland model [1] defined by the two-
dimensional spin 1/2 Hamiltonian

H =
∑
〈x,y〉

S(x)S(y) + α
∑
〈〈x,y〉〉

S(x)S(y) (1.1)

with nearest neighbor couplings and frustrating next-
nearest neighbor couplings on the diagonals shown in Fig-
ure 1 has attracted a lot of interest for theoretical and
experimental reasons:

(1) The product wave function

Ψ =
∏
〈〈x,y〉〉

[x,y] (1.2)

built up from singlet states

[x,y] =
1√
2

(χ+(x)χ−(y) − χ−(x)χ+(y)) (1.3)

is known to be an eigenstate of the Hamiltonian (1.1),
which turns out to be the ground state, if the coupling
α exceeds a critical value αc (αc ≈ 1.4) [2]. The phase
diagram has been studied recently by Weihong et al. [3]
by means of series expansions.

(2) The Hamiltonian (1.1) is suggested to be an ap-
propriate model for the compound SrCu2(BO3)2 the mag-
netic properties of which have been investigated in recent
high magnetic field experiments [4–6]. Plateaus have been
found in the magnetization curve M = M(B) at ratio-
nal values of the magnetization M/MS = 1/3, 1/4, 1/8,
where MS = 1/2 is the saturating magnetization.

From the theoretical point of view the appearance of
magnetization plateaus is well understood in quasi one-
dimensional systems, e.g. with ladder geometry [7]. Here,
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Fig. 1. The couplings in the Shastry-Sutherland model. Near-
est and next-nearest neighbor couplings are represented by dot-
ted and solid lines.

a quantization rule has been formulated by Oshikawa et al.
[8], which originates from the prediction of soft modes [9]
based on the Lieb-Schultz-Mattis (LSM) theorem [10].
Only the position of the possible plateaus – i.e. the quan-
tized value of the magnetization – are predicted by this
rule. The upper and lower critical fields which define the
width of the plateau, however, depend on the magnitude
of transition matrix elements with a momentum transfer
corresponding to the relevant soft mode. These matrix el-
ements contribute to the dynamical and static structure
factors and a strong peak in these quantities at the soft
mode momenta is needed for a pronounced plateau in the
magnetization curve [9].

The extension of the Lieb Schultz Mattis construc-
tion to higher dimensions (D > 1) meets difficulties. As
was pointed out by Oshikawa [11] magnetization plateaus
are possible in higher dimensions as well, provided that
the “commensurability condition” is satisfied. Based on a
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topological argument he shows, that this condition is a
robust non-perturbative constraint.

The emergence of magnetization plateaus in a mod-
ified Shastry-Sutherland model has been discussed in
reference [12]. Recently, Misguich, Jolicœur, and Girvin
studied the emergence of magnetization plateaus in the
framework of a Chern-Simons theory [13].

In reference [4] Kageyama et al. proposed that product
wave functions of the type (1.2) with certain distributions
of NS singlets (1.3) and NT triplets

{x,y} = χ+(x)χ+(y) (1.4)

might yield an appropriate ansatz for the ground state in
the sector with total spin

ST = NT /4 (1.5)

where NT and NS are constrained by the total number of
sites

NS +NT = N/2. (1.6)

Typical examples of these states are shown in Figures 2b,
3b, 4c and 4d. An effective Hamiltonian, describing the
interaction between singlets and triplets, has been devel-
oped and evaluated in references [14,15].

In this paper, we investigate a wider class of product
wave functions – which we call monomer-dimer configura-
tions [16] – and which are aimed to describe the magnetic
order at those magnetizations (M = 1/4, 1/6, 1/8, 1/16),
where plateaus are expected. Indeed we find a change in
the magnetic order if the frustration parameter exceeds
a critical value αc(M), which depends on the magneti-
zation M . For α > αc(M) we recover the singlet-triplet
configurations proposed in reference [4]. For α < αc(M),
however, we find new configurations with lower energy.

The outline of the paper is as follows: In Section 2 we
define the monomer-dimer configurations. In Section 3 we
minimize the expectation value of the Hamiltonian (1.1)
between monomer-dimer configurations. This procedure
singles out specific configurations, which visualize the
magnetic order at fixed magnetization M . In Section 4
we introduce the “frozen monomer approximation”, which
allows to lower the energy expectation values between
monomer-dimer configurations without changing the mag-
netic order, i.e. the distribution of “frozen” monomers.

The quality of the frozen monomer approximation is
studied for M = 1/8, 1/6, 1/4 in Section 5 by a compar-
ison with the ground state energies obtained from exact
diagonalizations on finite clusters.

We also look for the formation of magnetization
plateaus. Possible interpretations of the observed plateaus
in SrCu2(BO3)2 are discussed in Section 6.

2 Monomer-dimer configurations

The Shastry-Sutherland Hamiltonian (1.1) conserves the
total spin

S =
∑
x

S(x) (2.1)

and we therefore start from eigenstates of

S2 = S(S + 1) and S3 = −S, . . . , S . (2.2)

Following Hulthen [17], these states |K, ν = 2S〉 can
be constructed in the sector with total spin S – i.e. mag-
netization M = S/N – as product states of

– unpaired spin-up states at sites x1, . . . ,xν , ν = 2S:

|x+〉 = χ+(x) (2.3)

which we call “monomers”
– singlets of paired spins [x,y] (1.3) at sites x, y

(“dimers”):

|K, ν〉 =
ν=2S∏
j=1

|xj+〉
∏
〈x,y〉

[x,y]. (2.4)

Note, that in the monomer-dimer configurationK each
site x is occupied exactly once: either by a monomer or
a dimer. Moreover, monomer-dimer configurations |K, ν〉
yield an overcomplete non-orthogonal set of eigenstates
with total spin S.

The expectation value of the Hamiltonian (1.1) be-
tween monomer-dimer configurations can be easily calcu-
lated with the following rules:

〈1+, 2 + |S(1)S(2)|1+, 2+〉 =
1
4

(2.5)

〈[1, 2]|S(1)S(2)|[1, 2]〉 = −3
4

(2.6)

〈[1, 3]2 + |S(1)S(2)|[1, 3]2+〉 = 0 (2.7)

〈[1, 3][2, 4]|S(1)S(2)|[1, 3][2, 4]〉 = 0 . (2.8)

If we count on each configuration the numbers

– N
(0)
1 (K) of nearest neighbor dimers

– N
(0)
2 (K) of next-nearest neighbor dimers (correspond-

ing to Fig. 1)
– N

(1)
1 (K) of nearest neighbor monomer pairs

– N
(1)
2 (K) of next-nearest neighbor monomer pairs (cor-

responding to Fig. 1)

we can immediately compute the expectation value:

〈K, ν|H|K, ν〉 = −3
4
N

(0)
1 − 3

4
αN

(0)
2

+
1
4
N

(1)
1 +

α

4
N

(1)
2 . (2.9)

In order to minimize this expectation value we have to
look for configurations with

– a maximum number of nearest neighbor dimers N (0)
1

if α < 1
– a maximum number of next-nearest neighbor dimers
N

(0)
2 if α > 1

– a minimum number of monomer pairs N (1)
1 , N (1)

2 on
nearest and next-nearest neighbor sites.
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(a) (b)

Fig. 2. Monomer-dimer configurations with minimal energy
expectation value at M = 1/4. Bold lines represent “dimers”
i.e. paired spins coupled to singlets. Dotted lines indicate the
couplings between dimers induced by Hamiltonian (1.1). Un-
paired spin-up states (“monomers”) (Eq. (2.3)) are symbolized
by solid points; their couplings on nearest and next-nearest
neighbor sites are indicated by thin lines. (a) configuration
K1 for α < αc(M = 1/4) = 4/5; (b) configuration K2 for
α > αc(M = 1/4).

3 Magnetic ordering at fixed magnetizations

3.1 M = 1/4, ν = N/2

Let us start with M = 1/4. In this situation we have
to distribute ν = N/2 monomers and N/4 dimers on
the square lattice. We cannot avoid the appearance of
monomer pairs on nearest and next-nearest neighbor sites,
but we can minimize their numbers N (1)

1 and N
(1)
2 if we

cover the lattice in the way shown in Figure 2a. The bold
lines symbolize the nearest-neighbor singlets, the thin lines
the monomer pairs on nearest and next-nearest neighbor
sites. Dimer pairs can interact via the next-nearest neigh-
bor couplings in the Hamiltonian; they are represented by
dotted lines. According to (2.9), the expectation value of
the Hamiltonian is found to be:

E(K1, 1/4) = 〈K1, N/2|H|K1, N/2〉

=
N

8
(−1 + α/4) . (3.1)

A second configuration, shown in Figure 2b has been
proposed in reference [5] as a possible ground state config-
uration for M = 1/4. In this case, the expectation value
of H turns out to be:

E(K2, 1/4) = 〈K2, N/2|H|K2, N/2〉

= −αN
8
· (3.2)

The difference of (3.1) and (3.2)

E(K1, 1/4)−E(K2, 1/4) =
N

8

(
−1 +

5
4
α

)
(3.3)

changes its sign for α = 4/5, which means there is
a change in the magnetic order from configuration K1

to K2 if the frustration parameter exceeds the value
αc(M = 1/4) = 4/5.

(a)

(b)

Fig. 3. Same as Figure 2 for M = 1/6: (a) configuration K1

α < αc(M = 1/6) = 12/11; (b) configuration K2 for α >
αc(M = 1/6).

3.2 M = 1/6, ν = N/3

Next, we turn to the case M = 1/6, where we have to
distribute ν = N/3 monomers and N/3 dimers on the lat-
tice. The configuration K1 (Fig. 3a) minimizes the num-
ber N (1)

2 of monomer pairs on next-nearest neighbor sites,
whereas in the configurationK2 (Fig. 3b) the next-nearest
neighbor sites of Figure 1 are occupied with singlets and
triplets in the spirit of reference [5]. The difference of the
expectation values of H

E(K1, 1/6) = 〈K1, N/3|H|K1, N/3〉

= −N
4

(
1− α

12

)
(3.4)

E(K2, 1/6) = 〈K2, N/3|H|K2, N/3〉

= −N
4

5α
6

(3.5)

E(K1, 1/6) − E(K2, 1/6) = −N
4

(
1− 11

12
α

)
(3.6)

changes sign for αc(M = 1/6) = 12/11. Again we observe
a change in the magnetic order from K1 to K2 if α passes
this value.

It is remarkable to note, that in both cases α <
αc(M = 1/6) and α > αc(M = 1/6) a stripe order of
the monomers is predicted.

3.3 M = 1/8, ν = N/4

In the case of M = 1/8 we have to distribute ν = N/4
monomers and 3N/8 dimers on the square lattice. We can
avoid now completely the appearance of monomer pairs on
nearest and next-nearest neighbor sites as is demonstrated
by the configuration K1 shown in Figure 4a. Owing to
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(a)

(b)

(c)

(d)

Fig. 4. Same as Figure 2 for M = 1/8: (a) configuration K1,
α < 1; (b) configuration K2, 1 < α < 3/2; (c) and (d) config-
urations K3 and K4, α > 3/2.

the stripe structure, we can also construct a second con-
figuration (Fig. 4b) with N

(0)
1 = N/8 dimers on nearest

neighbor sites and N
(0)
2 = N/4 dimers on next-nearest

neighbor sites. Two further configurations K3 and K4

have been proposed in references [5,15], which only con-
tain N (0)

1 = 3N/8 dimers and N (1)
1 = N/8 monomer pairs

on next-nearest neighbor sites.
The corresponding energy expectation values are

E(K1, 1/8) = − 9
32
N (3.7)

E(K2, 1/8) = − 3
32
N(1 + 2α) (3.8)

E(K3, 1/8) = E(K4, 1/8) = −N
4
α. (3.9)

Comparing the expectation values (3.7)–(3.9) we expect a
change in the magnetic order with α:

α < 1 : E(K1) < E(K2) < E(K3) = E(K4) (3.10)

1 < α <
3
2

:E(K2) < E(K1) < E(K3) = E(K4) (3.11)

3
2
< α : E(K3) = E(K4) < E(K2) < E(K1). (3.12)

4 The frozen monomer approximation (FMA)

The monomer-dimer configurations which we developed
in the last section to describe the magnetic order in
the Shastry-Sutherland model are not eigenstates of the
Hamiltonian (1.1). Application of (1.1) onto these states
will generate new states. In this section we study the im-
pact of those couplings in the Hamiltonian, which generate
interactions only between dimer pairs, i.e. we consider an
approximation where the ν monomers are frozen at sites
x1 . . .xν in the configuration |K, ν〉. For each of these con-
figurations, we define a decomposition of the Hamiltonian
in three parts:

H = Hν +H(K) +
∑
i

H(xi,K) (4.1)

where

a) Hν contains all the nearest and next-nearest neigh-
bor couplings between the sites x1 . . .xν , where the
monomers are located. All other sites are occupied
with dimers. They form an antiferromagnetic cluster
K, which are represented by the dimers and the dot-
ted connections between dimers in Figures 2a–4d.

b) The cluster Hamiltonian H(K) is defined by the near-
est and next-nearest neighbor couplings on the dimer
cluster K.

c) The nearest and next-nearest neighbor couplings in
H(xi,K) take into account the remaining interactions
between the monomer at site xi and the dimers in the
cluster K.

The ground state energy E(K) of the antiferromag-
netic cluster Hamiltonian H(K)

H(K)Ψ(K) = E(K)Ψ(K) . (4.2)

is obviously lower than the expectation value of H(K) be-
tween the dimer product wave function on the cluster K.

The product ansatz

|x1 . . .xν ,K〉 =
ν=2S∏
i=1

|xi+〉
∏
j

Ψ(K) (4.3)

yields an eigenfunction of Hν +H(K) with energy

E(K, ν) =
1
4
N

(1)
1 (K) +

α

4
N

(1)
2 (K) +E(K) (4.4)
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K1,K2

K3,K4←↑

0 0.5 1 1.5 2 2.5
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=
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M
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1
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E0(N=4x6,α,M=1/8)/NE0(N=4x6,α,M=1/8)/N
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-0.7
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-0.5

-0.4

-0.3

Fig. 5. Ground state energies per site E0(N,M,α)/N for
Shastry-Sutherland lattices of N = 4 × 4, 4 × 6 sites and cor-
responding FMA energies of configurations K1, ..., K4 at mag-
netization M = 1/8.

which again represents an upper bound for the exact
ground state energy E0(M = ν/2N) of (4.1) in the sector
with magnetization M = S/N :

E0(M = ν/2N) ≤ E(K, ν) . (4.5)

In the derivation of (4.5) one has to use the fact, that the
expectation value of the interaction termH(ν,K) between
the product state (4.3) vanishes, since

〈Ψ(K)|Sl(y)|Ψ(K)〉 = 0 y ∈ K, l = 1, 2, 3 . (4.6)

5 Numerical results

In order to check the quality of the frozen monomer
approximation (FMA), we have computed the ener-
gies (4.4) and compared with exact diagonalizations of
the Shastry-Sutherland Hamiltonian at fixed magnetiza-
tion M = ν/2N on lattices with N = 4 × 4 = 16 and
N = 4× 6 = 24.

The strongest effects due to the frozen monomer ap-
proximation occur at small magnetizations. We therefore
start with M = 1/8.

5.1 M = 1/8

From Figures 4a–4c we see that the interactions between
the dimers generate a two-dimensional cluster which con-
tains all dimers in the configuration. In contrast, the
dimers in Figure 4d form quasi-one-dimensional “stripe”
clusters.

In Figure 5 the expectation values E(Kj ,M = 1/8, α),
j = 1, 2, 3, 4 in the frozen monomer approximation – cor-
responding to the configurations Figures 4a–4d – are rep-
resented by dotted lines.

The following points should be noted:

– The transition in the magnetic order from configura-
tion K2 (Fig. 4b) to configuration K3 (Fig. 4c) occurs
here at a larger value of the frustration parameter

αc(M = 1/8) ' 2.3. (5.1)

At this value the difference in the expectation values
E(K1,M = 1/8, α)−E(K3,M = 1/8, α) changes sign.
For smaller values of α the distribution of monomers
according to Figures 4a, b is favored in comparison
with the distribution of triplets in Figures 4c, d.

– For α > 1.3 the expectation values

E(K3,M) = E(K4,M) (5.2)

corresponding to configurations K3 and K4 (Fig. 4c
and d) coincide in the frozen monomer approxima-
tion. Indeed, here, the dimer product ansatz (2.4)
is an eigenstate of the antiferromagnetic cluster
Hamiltonian (4.2). In other words: The interactions
between the dimers (dotted lines in Fig. 4c, d) do not
lower the ground state expectation value.

– The expectation values E(Kj ,M = 1/8) deviate sig-
nificantly for α ≤ 1.3 from the exact results given
by the solid curves. Therefore, other distributions of
monomers should play an important role in the exact
ground state.

– For small α, the eact results show a linear behavior
which is well reproduced in a perturbative expansion
in α:

N−1E0(M,α) = ε1(M) +
α

4
ε2(M) (5.3)

where

εj(M) = 〈0|S(x)S(y)|0〉 j = 1, 2 (5.4)

ε1(1/8) ' −0.59
ε2(1/8) ' +0.43

are the ground state expectation values of the near-
est neighbor (j = 1, 〈x,y〉) and next-nearest neighbor
(j = 2, 〈〈x,y〉〉) spin-spin correlators of the unfrus-
trated Hamiltonian H(α = 0) = H1(1, 1) [18].

– Finite-size effects are small, as can be seen from a com-
parison of the exact results for the two systems N = 16
and N = 24.

5.2 M = 1/6

In this case the interactions between the dimers form
quasi-one-dimensional clusters with stripe geometry as
can be seen from Figures 3a, b. The expectation values
E(Kj,M = 1/6, α) j = 1, 2 in the frozen monomer ap-
proximation are shown in Figure 6. The transition point
in the magnetic order is found her at

αc(M = 1/6) = 1.2 . (5.5)

At this point the exact result of the N = 4 × 6 = 24
system (solid line) has its maximum. The expectation val-
ues E(Kj ,M = 1/6) deviate significantly for α < 1.2 from
the exact results given by the solid curve.
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Fig. 6. Ground state energy per site E0(N,M, α)/N for a
Shastry-Sutherland lattice of N = 4× 6 sites and correspond-
ing FMA energies of configurations K1,K2 at magnetization
M = 1/6.

5.3 M = 1/4

The configuration K1 in Figure 2a is built up from 4-point
singlet clusters. In the frozen monomer approximation we
lower the energy if we substitute each dimer pair

1

2

3

4

Fig. 7. The 2-dimer cluster in the configuration K1 (Fig. 2a).

[1, 2] [3, 4] → Ψ(1, 2, 3, 4) (5.6)

by the ground state of the 4-point cluster computed from
the 4-point Hamiltonian

H(1, 2, 3, 4) = S(1)S(2) + S(3)S(4) + αS(2)S(3) . (5.7)

The corresponding ground state energy

E(1, 2, 3, 4) = −2 + α

4
− 1

2
(
4− 2α+ α2

)1/2
< −3

2
(5.8)

is lower than the energy of the dimer pair. Taking into
account this effect in the expectation value (3.1) we find

E(K1,M = 1/4) = −N
16
(
4− 2α+ α2

)1/2
. (5.9)

Note that there are no interactions between the dimers
in the configuration K2 (Fig. 2b). Therefore the ground
state energy (3.2) cannot be lowered through the frozen

K1
K2←

↑

0 0.5 1 1.5 2

α

-0.3

-0.2

-0.1

0

E
(N

=
4

x4
,4

x6
,α,

M
=

1
/4

)/
N

E0(N=4x4,α,M=1/4)/NE0(N=4x4,α,M=1/4)/N

E0(N=4x6,α,M=1/4)/NE0(N=4x6,α,M=1/4)/N

0 0.5 1 1.5 2

-0.3

-0.2

-0.1

0

Fig. 8. Ground state energies per site E0(N,M, α)/N for
Shastry-Sutherland lattices of N = 4× 4, 4× 6 sites and corre-
sponding FMA energies of configurations K1, ,K2 at magneti-
zation M = 1/4.

monomer approximation. The energy differences of (5.9)
and (3.2) changes its sign at

αc(M = 1/4) =
1
3

(
−1 +

√
3
)
' 0.869. (5.10)

Below this value the expectation value E(K1,M = 1/4)
is a very poor approximation for the exact ground state
energy, indicating that the true ground state is not repro-
duced adequately by the frozen monomer approximation.

In Figure 8 we compare the energy expectation values
E(K1,M = 1/4, α) (5.9) and, E(K2,M = 1/4, α) (3.2)
with the exact diagonalization on finite systems with N =
4 × 4 = 16 and N = 4 × 6 = 24 sites. The maximum of
the exact ground state energy E0(M = 1/4, α) is found
at α ' 1.5 far beyond the transition point (5.10) from
configuration K1 to K2.

We have also studied the formation of plateaus in the
magnetization curve at M = 1/8, 1/6, 1/4 by exact diago-
nalizations on the finite clusters with N = 4× 4 = 16 and
N = 4× 6 = 24 sites. The lower and upper critical fields

BL(M,α) = E0(M,α)−E0(M − 2/N, α) (5.11)
BU (M,α) = E0(M + 2/N, α)−E0(M,α) (5.12)

were computed from ground state energies E0(M −
2/N, α), E0(M,α), E0(M + 2/N, α) with neighboring to-
tal spins S−1, S, S+1, S = M ·N . The results are shown
in Figure 9 (a) for M = 1/8 (b) for M = 1/6 (c) for
M = 1/4.

For α < 1.2 all critical fields are rather α-independent.
The finite-size effects indicate that the plateau width

∆(M,α) = BU (M,α)−BL(M,α) for α < 1.2 (5.13)

will vanish in the thermodynamic limit N → ∞ as it is
known for the unfrustrated model (α = 0).

For α = 1.5 the lower critical fields BL(M = 1/8, α)
and BL(M = 1/6, α) have a pronounced minimum; be-
yond this value (α > 1.5) all lower and upper critical
fields for M = 1/8, 1/6 increase with α.
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Fig. 9. Upper(BU) and lower(BL) critical fields for magneti-
zations M = 1/8 (a), 1/6 (b), 1/4 (c) calculated on Shastry-
Sutherland lattices of N = 4 × 4 (a,c) and N = 4 × 6 (a–c)
sites.

For M = 1/8 (Fig. 9a) and α > 1.5, finite-size ef-
fects appear to be small for BL(M = 1/8, α) but large
for BU (M = 1/8, α). We suggest that the rectangular ge-
ometry of the 4 × 6 system might be responsible for this
failure. It breaks the rotational invariance and therefore
does not allow for the rotated patterns in Figure 4.

For M = 1/4 (Fig. 9c) and α > 1.5 we observe a rather
clean signal for the opening of a magnetization plateau.

6 Discussion and perspectives

In this paper, we have investigated the magnetic order
of the Shastry-Sutherland model at fixed magnetizations
M = 1/8, 1/6, 1/4. For large enough values of the frustra-
tion parameter

α > αc(M = 1/8) = 2.3, α > αc(M = 1/6) = 1.2,
α > αc(M = 1/4) = 0.89

configurations built up from singlets and triplets on the
Shastry-Sutherland lattice (cf. Figs. 2b, 3b, 4c, d) –
as they were proposed in [4,5,14] – yield the lowest
energy expectation values. Here, a strong coupling ap-
proach (α−1 → 0) to take into account singlet-triplet
interactions is applicable. With this method Momoi and
Totsuka [14] found evidence for plateaus in the magneti-
zation curve at M = 1/4 and M = 1/6. However, they
did not find plateaus at smaller magnetizations (M = 1/8
and M = 1/16), “since the mechanism to stabilize these
plateaus is not yet clear” – as they say.

We think that this failure has a simple explana-
tion: The singlet-triplet configurations on the Shastry-
Sutherland lattice (cf. e.g. Fig. 4c, d for M = 1/8) are
unfavorable, since the formation of triplets on next-nearest
neighbor sites costs energy (cf. e.g. (2.9)). Configurations
– like K2 in Figure 4b for M = 1/8 – with well separated
monomers (unpaired spin-up states) yield a lower energy
as long as α is not too large (α < αc(M = 1/8) = 2.3).

If the coupling α – realized in the compound
SrCu2(BO3)2 – is indeed below this value, the experimen-
tally observed plateaus at M = 1/8 and M = 1/16 can-
not be associated with singlet-triplet configurations on the
Shastry-Sutherland lattice.

In order to find the correct magnetic order at low mag-
netizations M < ν/2N and α < 2.3 a more general ansatz
for the ground state configurations is needed. This can be
constructed in terms of monomers at fixed sites x1 . . .xν .
The spins on the remaining sites form an antiferromag-
netic cluster, the ground state energy of which depends
on the fixed positions of the ν monomers. Therefore, a
specific distribution of monomers characterizing the mag-
netic order is given by a minimum of the ground state
energy of the corresponding antiferromagnetic cluster (cf.
e.g. Fig. 4a, b for M = 1/8). We expect that for small val-
ues of M – in particular in the sectors with a finite num-
ber ν of monomers, i.e. M = ν/2N → 0 for N →∞ – the
singlet-triplet configurations on the Shastry-Sutherland
lattice are dominant again (for α ≥ αc(M = 0) = 1.4).
Each of the (N−ν)/2 singlets lowers the energy by −3α/4
whereas each of the few (ν/2) triplets costs energy α/4.

It should also be noted that the frozen monomer ap-
proximation becomes better and better for M → 0, since
the antiferromagnetic clusters cover more and more of the
whole lattice.

Finally, we have also studied the formation of plateaus
in the magnetization curve of the Shastry-Sutherland
model.

We looked for the α-dependence of the lower and upper
critical fields as they follow from exact diagonalizations on
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finite clusters with N = 4 × 4 = 16 and N = 4 × 6 = 24
sites. All the critical fields are almost α-independent for
α < 1.2, but change rapidly above this value. Indications
for the opening of a plateau are visible for M = 1/4, 1/6
supporting previous results with other methods [13–15].

The situation for M = 1/8 appears to be more sub-
tle. The lower critical field has a pronounced minimum at
α = 1.5. Here, the finite-size effects are rather small. In
contrast the upper critical field reveals a strong finite-size
dependence. Computations on larger systems are needed
for a reliable estimate of the thermodynamic limit.

We are indebted to M. Karbach for a critical reading of the
manuscript.
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